Course 3 -Acid/Base Titrations

Marking scheme

Question 1

(a) EXPLAIN: can be dissolved (used) to make up a solution of exact (known) concentration / no need to standardise by titration (can be made up directly) //

pure / stable / anhydrous (not hydrated) / no water loss (no efflorescence) / not deliquescent (not hygroscopic) / does not sublime / high formula (molecular, molar) mass (M_r)

ANY TWO: (3+2)

(b) DESCR: rinse (wash) from clock glass into beaker and dissolve //
pour (add) using funnel (glass rod) into 500 cm³ volumetric flask and add rinsings of beaker //
add deionised* water until bottom of meniscus on (level with) mark / read at eye level //
stopper and invert (not "shake") several times

ANY FOUR: (4 × 3)

*[Accept if "deionised water" appears elsewhere in candidate's description.]

$$\frac{500 \times 0.05 \times 106^*}{1000} \quad (3) \quad = \quad 2.65 \quad (3)$$

(c) (i) fill above mark and adjust with tap / fill to below mark and add dropwise (3)

(ii) safety / avoid solution getting into mouth / hygiene (3)

(d) NAME: indicator (3)

CHANGE: colour before // colour after (2×3)

Indicator	Colour before	Colour after
Methyl orange	Orange (yellow)	Red (pink)
Methyl red	Yellow	Red (pink)
Methyl yellow	Yellow	Red (pink)
Bromophenol blue	Blue (purple, violet)	Yellow
Bromocresol green	Blue	Yellow

[Linked marks - suitable indicator is a requirement for award of marks for matched colours]

(e) CALC: (i)
$$0.12 \text{ M}$$
 (9)

$$\frac{20.8 \times M_{HCl}}{2} = \frac{25 \times 0.05}{1}$$
 (6)

$$M_{HCl} = 0.12$$
 (3)

(ii)
$$4.38 / 4.39 \text{ g l}^{-1}$$
 (3)
$$0.12 \times 36.5^* = 4.38$$
 (3)

<u>NOTE</u>: Treat answers not given to two decimal places as slips.

^{*} Addition must be shown for error to be treated as a slip.

^{*} Addition must be shown for error to be treated as a slip.

(a) IDENTIFY: **anhydrous sodium carbonate (Na₂CO₃)** [Allow (3) for *sodium carbonate*.] (5)

[OTHER POSSIBILITY: sodium tetraborate (disodium tetraborate, Na₂B₄O₇)]

(b) NAME: indicator (3)

colour change (2×3)

methyl orange orange (yellow) // to red (pink) methyl red yellow // to red (pink) methyl yellow yellow // to red (pink) bromophenol blue blue (purple, violet) // to yellow bromocresol green to yellow blue

[Colour change must be matched with chosen indicator]

EXPLAIN: indicator is a weak acid / indicator is a weak base (3)

(c) (i) DESCRIBE: rinse with deionised (distilled) water //

rinse with reagent (solution) (2×3)

air will be displaced by the solution (reagent) / some of measured volume replaces air / some of measured volume not delivered / some of measured volume goes to fill space / causes (gives) wrong (inaccurate, too high, too low) reading (result, titre) / air will be displaced (removed, got rid of) during the titration / will be filled during the titration / affects result / burette only works properly when it (part below tap) is full / burette designed to work properly when it (part below tap) is full / distorts result (reading)

[Accept 'air bubbles' for 'air']

(6)

(d) (i) MOL/LITRE: 0.05731 / 0.0573 / 0.057 M [0.06 (-1)*]

25 × X	$= 26.05 \times 0.11$	(3)
1	2	
X =	0.05731 / 0.0573 / 0.057 M	(3)

*Not deducted if more accurate value also given. However, lost later if 0.06 used in later calculations.

(ii) g/LITRE: **6.042 to 6.075** g Γ^{-1} (3)

 $0.0573 \times 106^* = 6.075 (3)$

[* Addition must be shown for error to be treated as a slip.]

(3)

(3)

(9)

(3)

(3)

[Note: If no marks have been got in (e) (ii), 3 marks to be awarded if M_r of Na₂CO₃ (106) appears in the candidate's calculations.]

 $\frac{\text{water}}{106} = \frac{5.1625}{3.0375} = \text{water} = 180$

 $=> x = 180 \div 18 = 10$

(e) CALCULATE: (i)

62.9 to 63.2%

16.4

 $10.325 \times 100 = 62.9$

QUESTION 1

concentration (molarity) known (found, got, etc.) by another titration (colorimetry, EXPLAIN: u.v. spectroscopy) (5)

[Allow 4 for concentration (molarity) known (found, got, etc).]

(b) wash (rinse) into beaker of deionised (distilled, pure) water // DISSOLVED stir to dissolve // AND

pour through funnel (down glass rod) into volumetric flask adding rinsings of beaker // MADE-UP:

add last few drops of deionised water drop by drop (using dropper) to

bring bottom of meniscus level with (up to, on, at) mark reading at eye level

(6+3+3)

[Stopper and invert does not ensure solution made up to exactly 250 cm³.]['Deionised'

mentioned anywhere in (b) is acceptable for first point.]

- add drop by drop (slowly) / wash down inner sides of conical flask / swirl (shake) (c) STATE: flask contents //
 - add dropwise so that end point will be precisely (accurately) detected (correct end EXPLAIN: point not passed) / one drop of solution would change colour near end point / wash sides so that all reagent(s) (acid) in the reaction mixture / swirl to ensure thorough mixing of reactants (2×3)

['State' & 'Explain' to be linked.]

methyl orange / methyl red / bromophenol blue / bromocresol green (*d*) NAME: (3)

before // after (2×3) CHANGE:

Name (3) methyl orange methyl red bromophenol blue bromocresol green	Colour before (3) orange (yellow) orange (yellow) blue (purple, violet) blue	// // // //	Colour after (3) red (pink, peach) red (pink) yellow yellow

[Colour change must be matched with named indicator.]

CALCULATE: (i) **0.0432** M (6)(e) [Molarity divided by 4 to get 0.0108 - deduct 3 marks.]

$$\frac{25 \times M}{1} = \frac{21.6 \times 0.1}{2} \quad (3)$$

M = 0.0432(3)

[M = 0.04 or 0.043, deduct 1 mark forinappropriate rounding off in (i) or for use of 0.04 or 0.043 in (ii) but deduction to made once only.]

(ii)
$$4.6 \text{ g l}^{-1}$$

$$0.0432 \times 106 = 4.5792 / 4.58 / 4.6$$
 (3)

(f) % WATER:
$$54 - 54.4\%$$
 (3)

Hydrated = $2.50 \text{ g}/250 \text{ cm}^3 / 10 \text{ g l}^{-1}$

Anhydrous = $1.14 - 1.15 \text{ g}/250 \text{ cm}^3 / 4.58 - 4.6 \text{ g} \text{ l}^{-1}$

Water = $1.35 - 1.36 \text{ g}/250 \text{ cm}^3 / 5.4 - 5.44 \text{ g} \text{ l}^{-1}$

$$\Rightarrow \frac{1.35/1.36}{2.5} \times 100 / \frac{5.4/5.44}{10} \times 100 = 54\%$$
 (3)

QUESTION 1

(a) EXPLAIN: concentration (molarity) known (found, got, etc.) by another titration (colorimetry, u.v. spectroscopy) (5)

[Allow 4 for concentration (molarity) known (found, got, etc).]

(b) DISSOLVED wash (rinse) into beaker of deionised (distilled, pure) water //
AND stir to dissolve //

MADE-UP: pour through **funnel (down glass rod) into volumetric flask adding rinsings** of beaker // add last few drops of deionised water **drop by drop (using dropper) to**

bring bottom of meniscus level with (up to, on, at) mark reading at eye level

[Stopper and invert does not ensure solution made up to exactly 250 cm 3 .]['Deionised' mentioned anywhere in (b) is acceptable for first point.]

(c) STATE: add drop by drop (slowly) / wash down inner sides of conical flask / swirl (shake) flask contents //

add dropwise so that end point will be precisely (accurately) detected (correct end point not passed) / one drop of solution would change colour near end point / wash sides so that all reagent(s) (acid) in the reaction mixture /

swirl to ensure thorough mixing of reactants (2×3)

['State' & 'Explain' to be linked.]

(d) NAME: methyl orange / methyl red / bromophenol blue / bromocresol green (3)

CHANGE: before // after (2×3)

[Colour change must be matched with named indicator.]

(e) CALCULATE: (i) **0.0432** M [Molarity divided by 4 to get 0.0108 - deduct 3 marks.]

$$\frac{25 \times M}{1} = \frac{21.6 \times 0.1}{2} \quad (3)$$

$$M = \mathbf{0.0432} \tag{3}$$

[M = 0.04 or 0.043, deduct 1 mark for inappropriate rounding off in (i) or for use of 0.04 or 0.043 in (ii) but deduction to made once only.]

(ii) **4.6** g
$$l^{-1}$$

$$0.0432 \times 106 = 4.5792 / 4.58 / 4.6$$
 (3)

(f) % WATER: 54 - 54.4% (3)

Hydrated =
$$2.50 \text{ g}/250 \text{ cm}^3 / 10 \text{ g l}^{-1}$$

Anhydrous = $1.14 - 1.15 \text{ g}/250 \text{ cm}^3 / 4.58 - 4.6 \text{ g l}^{-1}$

Water =
$$1.35 - 1.36 \text{ g}/250 \text{ cm}^3 / 5.4 - 5.44 \text{ g l}^{-1}$$

$$\Rightarrow \frac{1.35/1.36}{2.5} \times 100 / \frac{5.4/5.44}{10} \times 100 = 54\%$$
 (3)

VALUE OF x: **6.9** – **7** (6)

Formula mass of Na ₂ CO ₃ = 106		Formula mass of $H_2O = 18$		
Na ₂ CO ₃ content = $4.6 \text{ g l}^{-1} [4.5792 - 4.6]$			Na ₂ CO ₃ content = 1.15 g /250 cm ³ [1.14 - 1.15]	
H ₂ O content = $10 - 4.6 =$ = $5.4 \text{ g } 1^{-1} [5.4 - 5.4208]$		OR	H ₂ O content = $2.5 - 1.15$ = $1.35 \text{ g} / 250 \text{ cm}^3 [1.35 - 1.36]$	
$\frac{5.4}{4.6} = \frac{18x}{106} \tag{3}$	6)	OK	$\frac{1.35}{1.15} = \frac{18x}{106} \tag{3}$	
$x = 6.9 - 7 \tag{3}$	3)		$x = 6.9 - 7 \tag{3}$	
Na_2CO_3 content = 4.6 g I^{-1} [4.5792 – 4.6]			Na_2CO_3 content = 1.15 g/250 cm ³ [1.14 -1.15]	
H ₂ O content = $10 - 4.6 =$ = $5.4 \text{ g I}^{-1} [5.4 - 5.4208]$			H ₂ O content = $2.5 - 1.15$ = $1.35 \text{ g} / 250 \text{ cm}^3 [1.35 - 1.36]$	
$\frac{4.6}{106} : \frac{5.4}{18} / 0.043 : 0.3 \tag{3}$	3)	OR	$\frac{1.15}{106} : \frac{1.35}{18} / 0.0109 : 0.075 $ (3)	
= 1 : 6.9 - 7 (3)	3)		$= 1 : 6.9 - 7 \tag{3}$	
Hydrated form: $10 \text{ g I}^{-1} = 0.0432 \text{ M}$			Hydrated form: $2.5 \text{ g} / 250 \text{ cm}^3 = 0.0108 \text{ mol}$	
Formula mass $=\frac{10}{0.0432} / 231.5$	3)	OR	Formula mass = $\frac{2.5}{0.0108}$ / 231.5 (3)	
$x = \frac{231.5 - 106}{18} = 6.9 - 7 \tag{3}$	3)		$x = \frac{231.5 - 106}{18} = 6.9 - 7 \tag{3}$	
$\frac{M_{\text{r(hyd)}}}{106} = \frac{10}{4.6^*} / M_{r(\text{hyd})} = 230.4[230.4 - 231.6]$	5]		$\frac{M_{\text{r(hyd)}}}{106} = \frac{2.5}{1.15^*} / M_{r(\text{hyd})} = 230.4 [230.4 - 232.5]$	
[*4.5792 – 4.6]	3)	OR	$ \begin{bmatrix} 106 & 1.15 \\ & [*1.14 - 1.15] \end{bmatrix} \tag{3} $	
$x = \frac{230.4 - 106}{18} = 6.9 - 7 \tag{3}$	3)		$x = \frac{230.4 - 106}{18} = 6.9 - 7 \tag{3}$	
$\frac{\text{mass}_{\text{water}}}{106} = \frac{5.4}{4.6} [5.4 - 5.4208] [4.5792 - 4.6]$]/	OR	$\frac{\text{mass}_{\text{water}}}{106} = \frac{1.35}{1.15} [1.35 - 1.36][1.14 - 1.15] /$	
$mass_{water} = 124.4 [124.4 - 125.5]$ (3)	3)	OK	$\mathbf{mass_{water}} = 124.4 [124.4 - 125.5] \tag{3}$	
$x = \frac{124.4}{18} = 6.9 - 7 \tag{3}$)		$x = \frac{124.4}{18} = 6.9 - 7 \tag{3}$	

[Reminder: second 3 may be awarded consequentially.]

VALUE OF x: **6.9** – **7** (6)

Formula mass of Na ₂ CO ₃ = 106			Formula mass of H ₂ O = 18		
Na ₂ CO ₃ content = 4.6 g l^{-1} [$4.5792 - 4.6$	6]		Na ₂ CO ₃ content = 1.15 g /250 cm ³ [1.14 - 1]	1.15]	
H ₂ O content = $10 - 4.6 =$ = $5.4 \text{ g l}^{-1} [5.4 - 5.4208]$		OR	H ₂ O content = $2.5 - 1.15$ = $1.35 \text{ g} / 250 \text{ cm}^3 [1.35 - 1.36]$		
$\frac{5.4}{4.6} = \frac{18x}{106}$	(3)		$\frac{1.35}{1.15} = \frac{18x}{106}$	(3)	
x = 6.9 - 7	(3)		x = 6.9 - 7	(3)	
Na ₂ CO ₃ content = 4.6 g l^{-1} [$4.5792 - 4.6$	6]		Na ₂ CO ₃ content = 1.15 g /250 cm ³ [1.14 -1.15]		
H ₂ O content = $10 - 4.6 =$ = $5.4 \text{ g I}^{-1} [5.4 - 5.4208]$		OP	H ₂ O content = $2.5 - 1.15$ = $1.35 \text{ g} / 250 \text{ cm}^3 [1.35 - 1.36]$		
$\frac{4.6}{106}:\frac{5.4}{18} / 0.043:0.3$	(3)	OR	$\frac{1.15}{106}:\frac{1.35}{18} / 0.0109:0.075$	(3)	
= 1 : 6.9 – 7	(3)		= 1 : 6.9 – 7	(3)	
Hydrated form: $10 \text{ g l}^{-1} = 0.0432 \text{ M}$			Hydrated form: $2.5 \text{ g} / 250 \text{ cm}^3 = 0.0108 \text{ m}$	nol	
Formula mass $=\frac{10}{0.0432} / 231.5$	(3)	OR	Formula mass $=\frac{2.5}{0.0108} / 231.5$	(3)	
$x = \frac{231.5 - 106}{18} = 6.9 - 7$	(3)		$x = \frac{231.5 - 106}{18} = 6.9 - 7$	(3)	
$\frac{M_{\text{r(hyd)}}}{106} = \frac{10}{4.6^*} / M_{r(\text{hyd})} = 230.4[230.4 - 2]$ [*4.5792 - 4.6]	31.5]		$\frac{M_{\text{r(hyd)}}}{106} = \frac{2.5}{1.15^*} / M_{r(\text{hyd})} = 230.4 [230.4 - 230.4]$ $[*1.14 - 1.15]$	32.5]	
[4.3792 – 4.0]	(3)	OR		(3)	
$x = \frac{230.4 - 106}{18} = 6.9 - 7$	(3)		$x = \frac{230.4 - 106}{18} = 6.9 - 7$	(3)	
$\frac{\text{mass}_{\text{water}}}{106} = \frac{5.4}{4.6} [5.4 - 5.4208][4.5792 -$	-4.6]/	OR	$\frac{\text{mass}_{\text{water}}}{106} = \frac{1.35}{1.15} [1.35 - 1.36][1.14 - 1.15]$	5] /	
$mass_{water} = 124.4 [124.4 - 125.5]$	(3)		$mass_{water} = 124.4 [124.4 - 125.5]$	(3)	
$x = \frac{124.4}{18} = 6.9 - 7$	(3)		$x = \frac{124.4}{18} = 6.9 - 7$	(3)	

[Reminder: second 3 may be awarded consequentially.]

QUESTION 1

а	b	С	d
5	12	12	21

(a) IDENTIFY: anhydrous sodium carbonate / Na₂CO₃

[Anhydrous omitted (3).]

(b) DESCRIBE: washing soda transferred to a beaker and dissolved in (added to) deionised water / washing soda rinsed into beaker with deionised water //

use funnel //

transfer solution (contents of beaker) to correctly prepared volumetric flask //

rinse beaker and glass rod into volumetric flask //

make up (top up, fill, add deionised water) to 250 cm³ with bottom of meniscus on mark //

stopper and invert several times

 (4×3)

(5)

(c) NAME: (i) methyl orange / methyl red

(3)

(3)

JUSTIFY:

(ii) strong acid weak base titration / end point (indicator range) below pH of 7 (at pH < 7, between pH 3 and pH 5) / diagram showing (description of) end point occurring within sharp rise in pH (steep vertical part of pH curve, in acidic range) /

indicator (methyl orange) changes colour coinciding with (at) end point (below pH of 7, at pH < 7, between pH 3 and pH 5)

WHAT: (iii) from orange (yellow) //

to red (pink, peach) (2 × 3)

[Allow (3) for colours in reverse]

 $0.00258 (2.58 \times 10^{-3}, 129/50000)$ moles HCl (3) (d) FIND: (*i*) $\frac{21.5 \times 0.12}{}$ = 0.00258 (2.58 × 10⁻³, 129/50000) moles HCl (3) (ii) $0.00129 (1.29 \times 10^{-3}, 129/100000)$ moles of Na₂CO₃ in 25.0 cm³ (3) Na_2CO_3 : HCl = 1: 2 \Rightarrow 0.00258 (2.58 \times 10⁻³, 129/50000) \div 2 = 0.00129 (1.29 × 10^{-3} , 129/100000) moles of Na₂CO₃ in 25.0 cm³ (3) [Divide by 2 essential.] or $\frac{25.0 \times M}{2} = \frac{21.5 \times 0.12}{2} \implies M = 0.0516 (5.16 \times 10^{-2}, 129/2500) \text{ moles /I (M) of Na₂CO₃}$ $0.0516 (5.16 \times 10^{-2}, 129/2500) \div 40 / [0.0516 (5.16 \times 10^{-2}, 129/2500)] \times (25 \div 1000)$ = 0.00129 (1.29 × 10^{-3} , 129/100000) moles of Na₂CO₃ in 25.0 cm³ (3) [Divide by 40 or multiply by $(25 \div 1000)$ essential.] (iii) $0.0129 (1.29 \times 10^{-2}, 129/10000)$ moles of Na₂CO₃ in 250 cm³ (3) $0.00129 (1.29 \times 10^{-3}, 129/100000) \times 10$ = 0.0129 (1.29 × 10^{-2} , 129/10000) moles Na₂CO₃ in 250 cm³ (3) [Multiply answer in (ii) by 10 essential.] or $0.0516 \div 4 / 0.0516 \times (250 \div 1000)$ = 0.0129 (1.29 × 10^{-2} , 129/10000) moles Na₂CO₃ in 250 cm³ (3) [Only from molarity Na₂CO₃ obtained in (ii).] (iv) **1.36**74 g Na₂CO₃ in 250 cm³ (3) $0.0129 (1.29 \times 10^{-2}, 129/10000) \times 106^* = 1.3674 \text{ g Na}_2\text{CO}_3 \text{ in } 250 \text{ cm}^3$ (3)[Multiply answer in (iii) by 106 essential.] [*Addition must be shown for error to be treated as slip.] **2.09**26 g water and 0.**116**256 moles water (v) (6)3.46 - 1.3674 = 2.0926 g water (3) $2.0926 \div 18** = 0.116256$ moles water (3)[Divide by 18 essential.] [**Addition must be shown for error to be treated as slip.] (vi) (3)0.116256 = 9 = x(3)0.0129

[Allow ratio 9:1 for 3 marks]

[1 mark to be deducted for incorrect or inappropriate **rounding**; deduction to be made once only in (d).]

[1 mark to be deducted for **each** of any other mathematical slips, e.g. transposing numbers, addition error in M_r where atomic masses **shown** but added incorrectly, final answer not a whole number, etc.

QUESTION 1

(a) COMPOUND: ethanol / ethyl alcohol / C_2H_5OH (4)

PROCESS: **oxidation** (4) can be got from reaction scheme but only if oxidation is shown by symbol or otherwise.

(b) DESCRIBE: **pipette** (burette) vinegar (3) can be shown on diagram

into **volumetric flask** (3) can be shown with diagram provided line on neck present

add deionised water (3)

when near mark, add **dropwise (using dropper/pipette/wash bottle)** / **until bottom of meniscus on (at) mark** / **read bottom of meniscus** (3)

(c) NAME: **burette** (3)

washing & with deionised water / then solution (ethanoic acid, diluted vinegar) /

FILLING: use of funnel (pour in at top) / ensure that the area below (jet, tip, nozzle) the tap is

filled (not 'the tap is filled') (3×3)

Note: if pipette is named the marks for rinsing with deionised water, then solution, can be given.

 ${\tt INDICATOR:} \quad \textbf{phenolphthalein / thymolphthalein / thymol blue / cresol purple / neutral red / thymolphthalein / t$

phenol red / bromothymol blue (3)

Cancelling applies to INDICATOR

(d) CONC DIL VIN: **0.15** (6) [$20.5 \times M = 25 \times 0.12$ (3) M = 0.15 (3)]

ORIG VIN: 1.5 (3) $[0.15 \times 10 \text{ (3)}]$ [Accept 0.075 moles per 50 cm³ or 90 g / 1 for 3 marks]

<u>Note</u>: if a value has not been worked out for the concentration of the original vinegar, (3) consequential marks can be given for the percentage calculation but only if a number (e.g. the answer to conc dil vin) is multiplied by 60 and the product obtained is divided by 10 - the (3) is given for the result of the division by 10; marks for the

fully correct answer can of course be given.

PERCENTAGE: **9** (6) $[1.5 \times 60 = 90 \text{ g l}^{-1}]$ (3) $90 \div 10 = 9 \%$ (3)

Note: answers can be given to more decimal places.

OUESTION 1

use 25 cm³ pipette (burette) // (a) MEASURE:

previously rinsed with deionised (distilled, pure) water //

and previously rinsed with vinegar (solution it will contain, sample) //

pipette: read at eye-level / read bottom of meniscus / bottom of meniscus on the mark /

allow drainage time / last drop to remain (not to be shaken out, blown out) /

drain under gravity / touch (tip, tap) pipette against wall of flask

burette: read at eye-level / jet (part below tap) full / vertical / read bottom of meniscus

ANY THREE: (3×3)

DILUTE:

transfer to 250 cm³ volumetric flask //

previously rinsed with deionised (distilled, pure) water //

fill with deionised water until bottom of meniscus is on mark //

stopper and invert flask a number of times / stopper and mix contents thoroughly

ANY TWO: (2×3)

[Award marks for reference to 'bottom of meniscus' once only in (a).]

(b) phenolphthalein NAME:

(3)

from pink (purple) WHAT:

(3)

to colourless

(3)

[Colours reversed unacceptable.] ['Clear' unacceptable for 'colourless'.]

(c) CALCULATE: (i)

(6)

$$M = \frac{1.20 \times 2}{40^*} = 0.06^{**} \,\mathrm{M}$$
 (3)

$$\frac{1.20}{20} = 0.06 \text{ g in } 25 \text{ cm}^3$$
 (3)

$$\frac{20}{0.8} = 0.03 \text{ moles/}500 \text{ cm}^3 (3)$$

$$\frac{25\times0.06}{1000} = 0.0015$$

$$\frac{25 \times 0.06}{1000} = 0.0015 \text{ moles/}25 \text{ cm}^3 \quad (3)$$

$$\frac{0.06}{40^*} = \mathbf{0.0015} \text{ moles/25 cm}^3 \quad (3)$$

$$\frac{0.03}{20} = 0.0015 \text{ moles/}25 \text{ cm}^3$$
 (3)

[*Addition must be shown for error to be treated as slip.]

 $0.00008 (8 \times 10^{-5}) \text{ moles per cm}^3$ (ii)

(6)

0.0015 moles CH₃COOH

(3)

(3)

(3)

 $\frac{18.75 \times M}{1} = \frac{25 \times 0.06}{1} / \frac{18.75 \times M}{1} = \frac{25 \times Molarity^{**}}{1}$

 $0.0015 \div 18.75 =$

M = 0.08*** M

(3)

(3)

 $0.00008 (8 \times 10^{-5}) \text{ moles per cm}^3$

 $= 0.00008 (8 \times 10^{-5}) \text{ moles per cm}^3$

(*d*) FIND: *(i)* **0.8** M

 $0.00008 \times 1000 \times 10 =$ **0.8** moles/L

(3)

 $0.08 \text{ (Molarity***)} \times 10 = 0.8 \text{ moles/L}$

(3)

(ii) 4.8 % (w/v) (6)

(3)

$$0.8 \times 60^* = 48 \text{ g/L}$$
 (3)

(3)

$$0.8 \div 10 = 0.08 \text{ moles}/100 \text{ cm}^3$$
 (3)

$$0.8 \times 60^* = 48 \text{ g/L}$$

 $\frac{48}{10} = 4.8 \text{ g/100 cm}^3 = 4.8 \% \text{ (w/v)}$

$$0.08 \times 60^* = 4.8 \text{ g}/100 \text{ cm}^3 = 4.8 \% \text{ (w/v)}$$

[*Addition must be shown for error to be treated as slip]

(e) WHAT: anhydrous sodium carbonate titrated with a strong acid {hydrochloric acid (HCl), sulfuric acid (H₂SO₄), nitric acid (HNO₃)} //

acid titrated with sodium hydroxide (NaOH) solution [Award (3) for correct titrations in reverse order.]

(3 + 2)

(a) WHY: vinegar (it) too concentrated / would require very concentrated (corrosive) NaOH solution / to suit concentration of NaOH solution / very large volume* of NaOH needed to be get a reasonable titration / small acid titration volume lowers accuracy / small acid titration volume increases percentage error [*Allow "value", "figure", "amount"] (5) [In the absence of adequate qualification, allow 3 marks for "for accuracy", "large volume of NaOH needed", "small titration figure(s) / titration figure(s) too small / end point(s) too low"]

(b) DESCRIBE: rinse pipette (burette) with water //

and then with vinegar //

fill with pipette filler / have bottom of meniscus on mark / read pipette (burette) at eye level (vertically) //

deliver (add, let flow) 25 cm³ to 250 cm³ volumetric flask // available from diagram add deionised (distilled, pure) water until level of water near mark // add dropwise (by dropper / by pipette / by wash bottle) //

bring bottom of meniscus to (on, at) mark / vol. flask at eye-level (vertical) // stopper and invert several times / mix thoroughly / solution homogeneous (even

concentration, same concentration throughout) ANY FIVE: (5×3)

phenolphthalein / thymolphthalein / thymol blue / cresol purple / neutral red / (c) NAME: phenol red / bromothymol blue (3)

pH change (drop, jump down) at end point c11 - c6 (c6 - c11)* / specify indicator range / JUSTIFY: titration of weak acid-strong base / pH at end point passes through indicator range (3) *Change of three to five units of pH required. [Allow "passes through midpoint of range".]

Name and Justify are not linked.

colour before (in base, in NaOH) // colour after (in acid) (2×3) STATE:

phenolphthalein	pink (purple, violet, red) // colourless
thymolphthalein	blue // colourless
thymol blue	blue // yellow
cresol purple	purple (pink, violet) // yellow
neutral red	yellow-brown (yellow, brown) // red
phenol red	red // yellow
bromothymol blue	blue // yellow

[Colour change must be matched with chosen indicator. Allow 3 for reversed colour change.]

0.11 mol 1^{-1} [Multiplied (or divided) by 4:loses 3 marks.] (6) (d) CALC: (i)

Mean titre = $\frac{(22.6 + 22.7)}{2} = 22.65$ [Loses 3 if incorrect] $22.65 \times M = 25.0 \times 0.10$ (3) M = 0.11 (3)

6.6 g l⁻¹ (3) (ii) $0.11 \times 60^* =$ 6.6 (3)

* Addition must be shown for error to be treated as a slip.

66 g l⁻¹ STATE: (3) $6.6 \times 10 =$ 66 (3)

6.6 % (w/v) (3)EXPRESS: $66 \div 10$ 6.6 (3)

(e) IDENTIFY: methanoic (formic) acid / HCOOH / CH₂O₂ (3) [If name & formula are given and one is incorrect, award marks on basis of first answer given.]