Course 3-pH Titres Indicators & DH

Marking scheme

Question 1

(b) Graph: **axes correct and correctly labelled** (pH axis does not have to start at 0) (3, 3)

[Note: penalty (-3) if pH on horizontal axis and volume on vertical axis.]

all points correctly plotted (6) {Allow (3) for 8 points plotted correctly} {not on graph paper (-6)} **correct graph line** (based on their points – no penalty for not joining the first or the last pair of points) (6)

Indicator: **bromothymol blue / phenol red / neutral red / cresol purple / thymol blue / phenolphthalein / thymolphthalein** (3)

Use: **range of indicator (indicator colour change) within pH jump on graph** (unambiguously identified e.g 'within vertical part of graph' or 'between lower and upper pH values of vertical part of <u>their</u> graph' or 'between values from table (6 – 11 or 6 – 11.2) corresponding to vertical part of graph' or 'any range (e.g. 8 – 10) within the vertical part of the graph'. (4) {Note: this (4) can be given even if the indicator chosen is incorrect.}

Question 2

(b) (i) EXPLAIN: the indicator itself dissociates according to the equation

$$HX \rightleftharpoons H^+ + X^- \qquad or \qquad HX + H_2O \rightleftharpoons H_3O^+ + X^-$$
 (3)

in acid (low pH) equilibrium lies on the left (shifts backward) giving colour of molecules (HX) / in acid (low pH) indicator is associated (undissociated) giving colour of molecules (HX)

Associated = present as molecules

(3)

(3)

(3)

in base (alkali / high pH) equilibrium lies on the right (shifts forward) giving colour of ions (X) / in base (alkali / high pH) indicator is dissociated giving colour of ions (X) Dissociated = present as ions (ionised) (3)

(ii) DRAW: graph with pH axis labelled at 7 and number over 7 (3)

0 25 50 No labelling or numbers required on horizontal axis.

(iii) EXPLAIN: Phenolphthalein has a pH range from 8.3 – 10 (8 – 10) / phenolphthalein changes colour in steep part of graph
[Allow (3) for weak acid-strong base titration] (6)

(a) (i): **Proton (H**⁺) **donor** // DEFINE:

> (ii): Related (produced) by gain of one proton (H⁺) / base + H⁺ (2×4)

Strong acid dissociates almost fully (readily) in aqueous solution (water) / DISTINGUISH:

good proton donor //

weak acid only slightly dissociates in solution / poor proton donor (2×3)

 \mathbf{X}^{-} (3)WHAT:

["SA diss fully" and "WA diss. slightly" (3); if "in solution (water)" mentioned

once, give other (3).

(b) Red colour observed // (i) STATE:

> Equilibrium shifted left by H⁺ present / high H⁺ conc. / high [H⁺] EXPL.: (2×3)

(ii) STATE: Yellow colour observed //

> Equilibrium shifted right by OH⁻ removing H⁺ / low H⁺ conc. / low [H⁺] (2×3) EXPL.:

(i): $13 \left[-\log 0.1 = 1 \right]$ (2) (c) CALC.: 14 - 1 = 13 (1)(3)

> (ii): 2.9 (6)

 $[H^{+}]^{2}/0.004 = 3.5 \times 10^{-4} / [H^{+}]^{2} = 1.4 \times 10^{-6} / [H^{+}] = 1.18 \times 10^{-3}$ $pH = -\log 1.18 \times 10^{-3} = 2.9$ (3) (3)

OR $-\log \sqrt{(K_a \times M)}$ $pH = -\log \sqrt{(3.5 \times 10^{-4} \times 0.004)}$ (3) pH =

pH = 2.9(3)

DRAW.:

EXPLAIN:

Axes labelled (pH – with 7 or 14, and volume – with 25 or 50) //Correct shaped curve with steep rise in pH (minimum: 4 to 10) // Rise around 25 cm³ (rise around middle of total addition) (3×3)

Most indicators will change within this pH range (jump in pH)

(3)

OUESTION 9

- DEFINE: (i) Arrhenius acid: produces H⁺ (hydrogen ion) by dissociation in water (aqueous solution) // (a)
 - (ii) Brønsted-Lowry acid: proton (hydrogen ion, H⁺) donor

- (b) $-\log_{10}[H^{+}]/-\log_{10}[H_{3}O^{+}]/$ negative log to base ten of hydrogen (hydronium) ion DEFINE: concentration in moles per litre (6)
 - reliable (accurate, suitable) only for dilute solutions / only valid (useful) in 0 14 range / STATE: applies to aqueous solutions only / unreliable (inaccurate, unsuitable) in very concentrated solutions / unreliable for negative pH values (3)['Temperature dependent /(25 °C)' acceptable.]['Valid range 1-14' unacceptable but

does not cancel.]

See graph on next page. (c) GRAPH:

both axes correctly labelled (pH, V, volume, cm³, NaOH) (3)

appropriate, correct numeric scales on both axes (3)

smooth curve of correct shape corresponding to 0 -15 cm³ NaOH added and from 25- 40 cm³ NaOH added

(3) careful plotting of vertical part (6)

[Volume versus pH acceptable.][(3) marks deducted if graph not on graph paper.]

(d) (i) CALCULATE:
$$0.014 \text{ M} [0.0139 - 0.014 \text{ M}]$$
 (9)

[H⁺] =
$$\sqrt{K_a[CH_3COOH]}$$
 / inverse log (-3.3) / 5.01 × 10⁻⁴ /
-log $\sqrt{K_a[CH_3COOH]}$ = 3.3 / log $\sqrt{K_a[CH_3COOH]}$ = -3.3 (6)

$$K_{\rm a} = \frac{[{\rm CH_3COO^-}][{\rm H^+}]}{[{\rm CH_3COOH}]} / \frac{[{\rm H^+}]^2}{[{\rm CH_3COOH}]} / 1.8 \times 10^{-5} = \frac{[5.01 \times 10^{-4}]^2}{[{\rm CH_3COOH}]}$$

$$[CH3COOH] = 0.014 M [0.0139 - 0.014 M]$$
Take [acid] or [HA] or M to be [CH₃COOH] and [A⁻] to be [CH₃COO⁻]

$$[H^{+}] = \sqrt{K_{a}[CH_{3}COOH]} / \text{inverse log } (-3.3) / 5.01 \times 10^{-4} / \\ -\log\sqrt{K_{a}[CH_{3}COOH]} = 3.3 / \log\sqrt{K_{a}[CH_{3}COOH]} = -3.3$$
 (6)

 $K_a[CH_3COOH] / 1.8 \times 10^{-5} \times [CH_3COOH] = (5.01 \times 10^{-4})^2$

[CH₃COOH] =
$$\frac{(5.01 \times 10^{-4})^2}{1.8 \times 10^{-5}} = \frac{2.51 \times 10^{-7}}{1.8 \times 10^{-5}} = \mathbf{0.014} \quad [\mathbf{0.0139 - 0.014} \text{ M}]$$
 (3)
Take [acid] or [HA] or M to be [CH₃COOH] and [A $^-$] to be [CH₃COO $^-$]

[1 mark deducted for incorrect rounding off.]

(ii) MAKE USE: 20 cm^3 (3)

(e) WHAT: phenolphthalein / thymol blue / cresol purple / thymolphthalein (6)

range of phenolphthalein coincides with vertical part of graph / range (8 -10) within pH jump / phenolphthalein changes colour corresponding to steep (vertical) part of graph / phenolphthalein changes colour within (coinciding with) pH jump at end point / phenolphthalein has one colour at pH = 8 (7, 6, before neutralisation, before vertical part of graph) and another at (after) pH = 10 (11, after neutralisation, after vertical

(2)

 $[K_a(K_{In}, pK_a, pK_{In})]$ value of phenolphthalein acceptable for (4).] REFER marks available only if WHAT marks awarded.]

part of graph)

QUESTION 9

(a) DEFINE:

(i) proton (H⁺) acceptor //

(ii) two species that differ by a proton (H^+) (2 × 3)

[Examples insufficient on their own.]

WHAT: **H₃O⁺ / hydronium ion**

(3)

(b) DEFINE: $pH = -log_{10} [H^+] / -log_{10} [H_3O^+] / minus log base 10 hydrogen ion concentration$

expressed in moles per litre (3)

ACCOUNT: [Allow 'hydrochloric' for HCl, 'sulfuric' for H2SO₄ and 'methanoic' for HCOOH.

Allow H^+ , proton, H_3O^+ or hydronium ion for' hydrogen ion'.]

(i) & (ii) First (9) marks available from **one** of the boxes below.

RELEVANT HCl information

0.10 M HCl produces 0.10 M H⁺ ion / pH HCl = $-\log$ (0.10) (6)

or

HCl monoprotic (monobasic) / one molecule HCl produces one H⁺ ion //

HCl is strong (fully dissociated into H^+ ions, a good proton donor) (2 × 3)

and

RELEVANT H₂SO₄ information

0.10 M H₂SO₄ produces 0.20 M H⁺ ion /

 $pH H_2SO_4 = -log (0.20) /$

H₂SO₄ diprotic (dibasic) /

one molecule H₂SO₄ produces two H⁺ ions /

H₂SO₄ produces (has) more (twice as many) H⁺ ions as HCl

(3)

or

RELEVANT H₂SO₄ information

 $0.10 \text{ M H}_2SO_4 \text{ produces } 0.20 \text{ M H}^+ \text{ ion } / \text{ pH H}_2SO_4 = -\log (0.20)$ (6)

or

H₂SO₄ diprotic (dibasic) /

one molecule H₂SO₄ produces two H⁺ ions /

 H_2SO_4 produces (has) more (twice as many) H^+ ions as HCl (3)

and

RELEVANT HCl information

0.10 M HCl produces 0.10 M H $^+$ ion / pH HCl = $-\log$ (0.10)

(3)

and

RELEVANT HCOOH information

 $0.10~\mathrm{M}$ methanoic acid (HCOOH) solution produces $4.27 \times 10^{-3}~\mathrm{M}$ (less than

0.10 M) H⁺ ion /

pH HCOOH = inverse log(-2.37) {antilog(-2.37)} /

HCOOH is weak (slightly (not fully) dissociated into H⁺ ions, a poor proton donor) /

HCOOH weaker than HCI

(3)

USE: (iii) $K_a = 1.82 \times 10^{-4}$ (6)

[H⁺] = inverse log (-2.37) */ antilog (-2.37)* / 4.27 ×
$$10^{-3}$$
 / $10^{-2.37}$ (3) *Omission of minus loses this (3)

$$\Rightarrow K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} \left(\frac{[H^{+}]^{2}}{[HA]}, \frac{[H^{+}]^{2}}{[0.1]} \right) /$$

$$[H^{+}] = \sqrt{K_{a}[HA]} / 4.27 \times 10^{-3} = \sqrt{K_{a}[0.1]} / [H^{+}]^{2} = K_{a}[HA] / (4.27 \times 10^{-3})^{2} = K_{a}(0.1)]$$

$$K_{a} = 1.82 \times 10^{-4}$$
(3)

$$[acid] = [HA] = [HX] = M = M_a$$

$$(iv)$$
 pH = **2.5**2 (3)

pH =
$$-\log \sqrt{K_a[\text{HA}]}$$
*= $-\log \sqrt{1.82 \times 10^{-4}[0.05]}$ * = **2.5**2 (3) *Omission of minus loses this (3)

$$[acid] = [HA] = [HX] = M = M_a$$

(c) DRAW: axes labelled (pH and volume) //
curve of correct shape with steep rise at 25 cm³ //
vertical part mostly above pH = 7 //
steep rise coincides with 25 cm³ NaOH

[Allow correct work with volume scale increasing from right to left or pH decreasing on *y*-axis towards 0.]
[Allow volume on *y*-axis.]

NAME: phenolphthalein (6)

colour change (indicator range) coincides with sharp rise on graph /
colour change occurs > 7 /colour change occurs between 7 and 10 /
indicator range is 8.3 – 10
[NAME and EXPLAIN linked] (2)

WHAT:

[-2.52 loses this (3).]

(b)

substance that produces OH⁻ (hydroxyl ions, hydroxide ions) in water (aqueous solution) / substance that increases concentration of OH⁻ (hydroxyl ions, hydroxide ions) in aqueous solution (3)NH₃ accepts a proton (H⁺) (3)WHY: [Allow 'ammonia (NH₃) accepts protons'.] (*i*) pH = 0.30(3)CALCULATE: $pH = -log [H^+] = -log 0.50 = 0.30$ (3)[-0.3 loses this (3).] (ii)pH = 2.52(6)pH = $-\log \sqrt{K_a[HA]}$ / pH = $-\log \sqrt{1.8 \times 10^{-5} \times 0.50}$ (3) pH = 2.52(3)

substance that dissociates into OH⁻ (hydroxyl ions, hydroxide ions) in water (aqueous solution) /

which: ethanoic acid / CH₃COOH (3)

initial pH is 2.52 / starts at 2.52 / initial pH is not 0.30 / does not start at 0.3 //
vertical part (steep rise) of graph is mostly above pH = 7 (between 7 and 11) //
buffering (no pH rise) between 12 and 35 cm³ NaOH added

ANY TWO: (3 + 1)
[STATE marks only available if which marks awarded.]

changes colour (pH range) between pH = 6 (7, 8) and pH = 9 (10, 11) / colour change (pH range of indicator) coincides with steep (vertical) part of graph / does not change colour before pH = 6 (7, 8) (3)

 $[acid] = [HA] = [HX] = M = M_a$

Question 7

WHAT:

QUESTION 9

(a) $pH = -\log_{10}[H^{+}] / pH = -\log_{10}[H_{3}O^{+}] /$ DEFINE: minus log base 10 hydrogen ion concentration expressed in moles per litre [Deduct 1 for brackets not square.] $K_{W} = [H_{3}O^{+}][OH^{-}] / K_{W} = [H^{+}][OH^{-}]$ WRITE: [Deduct 1 for brackets not square.] [6 + 2](b) only for aqueous solutions / STATE: only for dilute solutions / not effective (reliable, accurate, suitable) in concentrated solutions / temperature dependent (pH scale 0 - 14 only at 25 °C) (6)(c) CALCULATE: $[H_3O^+] = 2.2 \times 10^{-6} - 2.24 \times 10^{-6}$ moles per litre (*i*) (6) $[H_3O^+]$ = inverse log (-5.65) / $[H_3O^+]$ = antilog(-5.65) / $[H_3O^+]$ = 10^{-5.65} (3) $[H_3O^+] = 2.2 \times 10^{-6} - 2.24 \times 10^{-6}$ moles per litre (3) $[OH^{-}] = 4 \times 10^{-9} - 5 \times 10^{-9}$ moles per litre (6) $K_{\rm W} = [{\rm H_3O^+}][{\rm OH^-}] / K_{\rm W} = 2.2 \times 10^{-6} [{\rm OH^-}]$ $[OH^{-}] = 1.0 \times 10^{-14} \div 2.2 \times 10^{-6}$ (3) \Rightarrow $= 4 \times 10^{-9} - 5 \times 10^{-9}$ moles per litre (3)pOH = 14 - 5.65 = 8.35(3) $[OH^{-}]$ = inverse $log(-8.35) / [OH^{-}]$ = antilog(-8.35) / $[OH^{-}]$ = $10^{-8.35}$ $[OH^{-}] = 4 \times 10^{-9} - 5 \times 10^{-9}$ moles per litre (3)(d) (*i*) WHAT: 20.0 cm³ (3) (ii) DEDUCE: A: 1.0 M B: 0.5 M C: 1.0 M D: 1.0 M (4×3) [Take order of the question unless responses are clearly labelled.] (iii) which: C (3) JUSTIFY: lower initial pH (D has higher initial pH, greater initial H⁺ concentration, $[H^{+}]$ higher initially) / from graph 1.8 – 1.9 < 2.2 – 2.3 / Ka of C > Ka of D shown by calculation using pH = $-\log_{\lambda} \sqrt{Ka[acid]}$ / first part of C curve below D curve / C curve becomes steep (vertical) first / C has longer vertical part to its pH curve / C curve closer to strong A curve (3) [JUSTIFY marks only available if WHICH marks awarded.] (*iv*) WHAT: CH₃COO[−] (3)

QUESTION 7

pH = **1.1**

- (a) (i) DEFINE: proton (hydrogen ion, H^+) donor (3)
 - (ii) WHAT: is a good proton (H⁺) donor / has a weak conjugate base / fully dissociated / has large (complete) degree of dissociation into ions / K_a value large (3)
 - (iii) IDENTIFY: OCI
 - (iv) IDENTIFY: H_2SO_4 (3)
- (b) CALCULATE: (i) pH = 1.1 (6)

$$[H^{+}] = 0.08$$

$$pH = -\log_{10}[H^{+}] / pH = -\log_{10}[H_{3}O^{+}]$$
(2)

CALCULATE: (ii)
$$pH = 4.5$$
 (6)

(2)

pH =
$$-\log \sqrt{K_a[HA]}$$
 (pH = $-\log \sqrt{1.2 \times 10^{-9}}$, pH = $-\log (3.5 \times 10^{-5})$) (3)

```
QUESTION 7
                     dissociates in water (aqueous solution) //
(a) DEFINE: (i)
                     to produce protons (hydrogen ions, H<sup>+</sup>)
                                                                                                                  (2 \times 2)
                     [Allow H<sub>3</sub>O<sup>+</sup> (hydronium ions)]
            (ii)
                     proton (hydrogen ion, H<sup>+</sup>) donor
                                                                                                                      (4)
     (iii)
            STATE:
                     protons (H<sup>+</sup> ions) do not exist alone in solution /
                     protons (H<sup>+</sup> ions) from dissociation donated (become attached, transferred)
                     to water (some other species) /
                     protons (H<sup>+</sup> ions) become H<sub>3</sub>O<sup>+</sup> (hydronium ions) /
                     water must always be involved (theory confined to aqueous solutions) /
                     NH<sub>3</sub> cannot be considered a base /
                     water cannot be considered amphoteric (amphoteric substances not explained)
                                                                                                                      (6)
     (iv)
                     two species (two substances, an acid and a base) that differ by a proton (H<sup>+</sup>) /
            WHAT:
                     base accepts proton to become its conjugate acid /
                     acid donates proton to become its conjugate base
                                                                                                                      (3)
                     greater the tendency of an acid to donate protons (more the acid
(b) DISTINGUISH:
                     tends to dissociate into ions) the stronger it is /
                     less the tendency of an acid to donate protons (less the acid
                     tends to dissociate into ions) the weaker it is
                                                                                                                      (6)
                     or
                     strong acid:
                     is a good proton (H<sup>+</sup>) donor / has a weak conjugate base / fully dissociated /
                     has large (complete) degree of dissociation into ions / Ka value large //
                     weak acid:
                     is a poor proton (H<sup>+</sup>) donor / has a strong conjugate base /
                     dissociated into ions to small extent / slightly* dissociated / Ka value small
                                                                                                                  (2 \times 3)
                     [*Accept weak acid only partly dissociated.]
                     HSO_4^- + H_2O \rightleftharpoons SO_4^{2-} + H_3O^+
(c) WRITE:
                                                                                             FORMULAE: (3) BALANCING: (3)
                     [non equilibrium arrow acceptable here]
                     HA + H_2O \rightleftharpoons H_3O^+ + A^-
(d) (i)
                                                                                             FORMULAE: (3) BALANCING: (3)
            WRITE:
                     [non equilibrium arrow unacceptable....(-1)]
                     [H_3O^+] = [A^-] = 1.5 \times 10^{-3} (3/2000, 0.0015) M
     (ii)
            FIND:
                                                                                                                      (3)
                       [H_3O^+] = [A^-]
                       1.5% of 0.1 = 1.5 \times 10^{-3} (3/2000, 0.0015) M
                                                                                                                  (3)
```

(iii) CALCULATE:
$$pH = 2.82$$
 (6)
$$pH = -\log_{10}[H^+] / pH = -\log_{10}[H_3O^+] / pH = -\log_{10}(1.5 \times 10^{-3})$$
 (3)
$$pH = 2.82$$
 (3)

(iv) CALCULATE:
$$K_a = 2.25 \times 10^{-5} - 2.55 \times 10^{-5}$$
 (6)
$$K_a = \frac{[H_3 O^+][A^-]}{[HA]} / \text{Allow } K_a = \frac{[H^+][A^-]}{[HA]}$$

$$= \frac{(1.5 \times 10^{-3})^2}{0.10} = 2.25 \times 10^{-5}$$
 (3)

or

$$\begin{aligned} \mathsf{pH} &= -\mathsf{log} \sqrt{K_a[\mathsf{HA}]} & / \, \mathsf{antilog}(-\,\mathsf{pH}) = \sqrt{K_a[\mathsf{HA}]} \, / \\ 2.82 &= -\mathsf{log} \sqrt{K_a[\mathsf{HA}]} & / \, \mathsf{antilog}(-2.82) = \sqrt{K_a[\mathsf{HA}]} \, / \, 10^{-2.82} = \sqrt{K_a[\mathsf{HA}]} \, / \\ 2.82 &= -\mathsf{log} \sqrt{K_a[0.\,10]} & / \, \mathsf{antilog}(-2.82) = \sqrt{K_a[0.\,10]} \, / \, 10^{-2.82} = \sqrt{K_a[0.\,10]} \, / \\ [\mathsf{H}_3\mathsf{O}^+] &= \sqrt{K_a[\mathsf{HA}]} & / \, 1.5 \times 10^{-3} = \sqrt{K_a[\mathsf{HA}]} \, / \, \, \mathsf{Allow} \, [\mathsf{H}^+] = \sqrt{K_a[\mathsf{HA}]} \, / \\ [\mathsf{H}_3\mathsf{O}^+] &= \sqrt{K_a[0.\,10]} & / \, 1.5 \times 10^{-3} = \sqrt{K_a[0.\,10]} \, / \, \, \mathsf{Allow} \, [\mathsf{H}^+] = \sqrt{K_a[\mathsf{HA}]} \, \end{aligned}$$

Accept [HA] after dissociation taken as $0.10 - 1.5 \times 10^{-3} = 0.0985$ M

а	b	С	d	е	f
8	6	6	12	6	12

(a) WHAT: $\operatorname{proton}(H^{+})\operatorname{donor}$ (4)

HOW: greater the tendency of an acid to donate protons (more the acid tends to dissociate into ions) the stronger it is /

less the tendency of an acid to donate protons (less the acid

tends to dissociate into ions) the weaker it is

(4)

or

strong acid:

is a good proton (H⁺) donor / has a weak conjugate base / has large (complete) degree of dissociation into ions / K_a value large //

weak acid:

is a poor proton (H $^+$) donor / has a strong conjugate base / dissociated into ions to small extent / slightly (only partly) dissociated / K_a value small (2 × 2)

(b) WHAT IS: (i) H_2SO_4 (3)

(ii)
$$SO_4^{2-}$$
 (3)

(c) DESCRIBE: add (mix) barium chloride (BaCl₂) solution dropwise to (with) few cm³ of sample (water) in test-tube //

white (cloudiness, precipitate, solid) insoluble in HCI (remains after addition of

- **HCI)** when sulfate present (positive result) (2×3)
- (d) CALCULATE:

(i)
$$[H_3O^+] = 2.5 \times 10^{-6} - 2.512 \times 10^{-6}$$
 moles per litre (6)

 $[H_3O^+]$ = inverse log(-5.6) / $[H_3O^+]$ = antilog(-5.6) / $[H_3O^+]$ = 10^{-5.6} (3)

 $\Rightarrow [H_3O^+] = 2.5119 \times 10^{-6} \text{ moles per litre}$ (3)

(ii) $[OH^-] = 1.58 \times 10^{-7} - 1.6 \times 10^{-7}$ moles per litre (6)

$$pOH = 14 - 7.2 = 6.8$$
 (3)

 $[OH^{-}]$ = inverse log (-6.8) / $[OH^{-}]$ = antilog(-6.8) / $[OH^{-}]$ = $10^{-6.8}$

$$\Rightarrow$$
 [OH⁻] = **1.58** × **10**⁻⁷ – **1.6** × **10**⁻⁷ moles per litre (3)

or

 $[H_3O^+]$ = inverse $log(-7.2)/[H_3O^+]$ = antilog $(-7.2)/[H_3O^+]$ = $10^{-7.2}$

$$[H_3O^+] = 6.31 \times 10^{-8}$$
 (3)

$$\Rightarrow$$
 [OH⁻] = 1.0 × 10⁻¹⁴ ÷ 6.31 × 10⁻⁸ = **1.58** × **10**⁻⁷ – **1.6** × **10**⁻⁷ moles per litre (3)

(e) CALCULATE:

$$pH = 3.1 - 3.12$$
 (6)

pH =
$$-\log \sqrt{K_a[\text{HA}]}$$
 / pH = $-\log \sqrt{(4.0 \times 10^{-4}) \times (1.5 \times 10^{-3})}$ (3)

$$pH = 3.1 - 3.12$$
 (3)

[negative answer is not a slip error here]

$$[HA] = [HX] = M = M_a = [acid] = [indicator]$$

(f) (i) WRITE:
$$HA + H_2O \rightleftharpoons H_3O^+ + A^-$$
 (3) [Do not penalise if equilibrium arrow not used]

(ii) WHAT: **yellow (orange)** colour observed / red changes to **yellow (orange)** / **yellow (orange)** colour intensifies / **colour of A**⁻ observed (3)

EXPLAIN: H_3O^+ (H^+) ions removed by OH^- ions of base to form water / $H_3O^+ + OH^- \rightarrow 2H_2O$ / $H^+ + OH^- \rightarrow H_2O$ / lower [H^+] / lower [H_3O^+] // equilibrium (reaction) moves to right (products, yellow side) /

more A⁻ at new equilibrium (2 × 3)

[WHAT must be correct for EXPLAIN to be awarded marks.]

Question 11

QUESTION 7

strong acid: good proton (H⁺) donor / readily donates proton (H⁺) // (a) DISTING: weak acid: poor (weak) proton donor (5 + 3)['Does not readily donate a proton' or references to dissociation not acceptable and

cancellation applies.]

 $H_2O // NO_2^-$ (b) IDENTIFY: (2×3)

 $-\log_{10}[H^{+}]/-\log_{10}[H_{3}O^{+}]$ (c) DEFINE: (3)

[Square brackets essential.][Mathematical definition expressed in words is acceptable.]

CALCULATE: 0.01 M (3)

> $[H_3O^+]$ = inverse $log_{10}(-2)$ = **0.01** M (3)

concentration of hydronium (hydrogen) ions $\{[H_3O^+], [H^+]\}$ lower than 0.2 M/ EXPLAIN: small (low, 5%) level of dissociation (only slightly dissociated (ionised), almost undissociated, only 0.01 M dissociated) /

> a strong monobasic acid with concentration 0.2 M would have a concentration of hydronium (hydrogen) ions $\{[H_3O^+], [H^+]\} = 0.2$

a strong monobasic acid with concentration 0.2 M would have a pH = $0.7 / 10^{-2}$

 K_a of nitrous acid from data supplied is only $[0.01]^2 \div [0.2] = 5 \times 10^{-4}$ and is consistent with weak acid

(3)

(3)

0.01 M

WHAT:

CALCULATE: 1×10^{-12} M (6)

> $[H_3O^+][OH^-] = 1 \times 10^{-14}$ (3) $[OH^{-}] = 1 \times 10^{-14} \div 0.01 = 1 \times 10^{-12} \text{ M}$ (3) pH + pOH = 14 / pOH = 12(3) $[OH^{-}]$ = inverse $log_{10}(-12) = 1 \times 10^{-12} M$ (3)

causes rapid growth of water plants (algae) / causes algal blooms // (e) EXPLAIN: decay of these plants by aerobic microorganisms (bacteria, decomposers) / respiration by decomposers (bacteria, microorganisms) of these plants uses up oxygen / surface plants block light preventing (reducing) photosynthesis (2×3)

(b) DEFINE: proton (hydrogen ion, H⁺) donor

WHAT: acid and base that differ by a proton (hydrogen ion, \mathbf{H}^{+}) (4 + 3)

STATE: purple //

EXPLAIN: hydroxyl (hydroxide) ions (OH remove hydrogen ions (H causing the

reaction (equilibrium) to shift forward (to the right)

CALC: (i) pH = 13.7 (6)

(t) pii -13.7

(ii) pH = 2.85

 $pH = -\log \sqrt{2.0 \times 10^{-5} \times 0.1}$ (3) = 2.85 (3)

 $\begin{bmatrix}
 H^{+} \end{bmatrix} = \sqrt{2.0 \times 10^{-5} \times 0.1}$ $pH = -\log[H^{+}] = 2.85 \quad (3)$

 (2×3)

Question 13

QUESTION 7

(a) (i) acid: proton (hydrogen ion, H^+) donor (4)

(ii) conjugate pair: acid & base that differ by a proton (hydrogen ion, H^+) (4)

IDENTIFY: $HNO_2 \& NO_2^-$ // $H_2O \& H_3O^+$ (2 x 3)

DISTING: strong: good proton donor / completely (high) dissoc. into ions in dil. aq.soln. (3)

weak: **poor proton donor / slightly (low) dissoc.** into ions in dil. aq. soln. (3) [Accept "does not readily dissoc." but <u>not</u> "does not completely (fully) dissoc."]

(b) CALC: pH = 2.15 [or answers that give 2.15 when corrected to two decimal places.] (9)

 $pH = - \log \sqrt{K_a \times M}$ (3) $K_{\rm a} = [\underline{\rm H}^{\pm}][{\rm NO}_2^{\pm}]$ $[H^{\pm}]^2$ [HNO₂]0.1 $= -\log \sqrt{5 \times 10^{-4} \times 0.1}$ $[H^{+}]^{2}$ 5×10^{-5} (3) (3) 0.007 $[H^{+}]$ (3) = 2.15(3)pН 2.15 (3)

WHAT: 1 (6)

pH = $-\log [H^+]$ = $-\log [0.1]$ (3) = 1

QUESTION 8

(a) DEFINE: (i) acid: proton (hydrogen ion, H^+) donor (4)

(ii) base: proton (hydrogen ion, H^{\dagger}) acceptor (4)

(b) IDENTIFY: acid (3) its conjugate base (3)

acid = H_2F^+ (3) its conjugate base = HF (3) acid = HCl (3) its conjugate base = Cl^- (3)

[If not specified as acid and conjugate base, take the order in the question to be the intended order. Accept if indicated correctly on the equation.]

(c) CALCULATE: 3.22 / 3.2 (12)

$$pH = -\log\sqrt{K_a \times M} \tag{3}$$

pH =
$$-\log\sqrt{1.8 \times 10^{-4} \times 0.002}$$
 / $-\log\sqrt{3.6 \times 10^{-7}}$ / $-\log 0.0006$ / $-\log 6 \times 10^{-4}$ (3)

$$pH = 3.22 \tag{6}$$

OR

$$[H^{+}]^{2} = K_{a}M / 1.8 \times 10^{-4} \times 0.002 / 3.6 \times 10^{-7}$$
 (3)*

$$[H^{+}] = \sqrt{1.8 \times 10^{-4} \times 0.002} / \sqrt{3.6 \times 10^{-7}} / 0.0006 / 6 \times 10^{-4}$$
(3)*

$$pH = 3.22$$
 (6)

 $*[H^+]^2$ and $[H^+]$ are required in the case of these marks.

- (i) proton donor / donor of hydrogen ions (H⁺) (4) (a)
 - proton acceptor / acceptor of hydrogen ions (H⁺) (4) (ii)
 - Identify: H_2S (3) OH_{-} (3) Note: both are acids; both are also conjugate acids. Therefore, the order does not matter.
- (b) $pH = -\log_{10}[H^{+}] / -\log_{10}[H_3O^{+}] / \text{negative log to base ten of hydrogen (hydronium) ion concentration (6)}$

Calc: pH = 2.37 - 2.4 (12)

$$6\% (w/v) = 6 g in 100 cm^{3} = 60 g l^{-1}$$
(3)

$$60 g l^{-1} \div 60 = 1 mol l^{-1}$$
(3)

$$[H^{+}]^{2} = 1.8 \times 10^{-5} / [H^{+}] = \sqrt{1.8 \times 10^{-5}} / 0.0042$$
(3)

$$pH = -\log [H^{+}] = -\log \sqrt{1.8 \times 10^{-5}} = 2.37 - 2.4$$
(3)

$$OR$$

 $6 \% (w/v) = 6 g in 100 cm^3 = 60 g l^{-1}$ (3)

For second (3) use the number coming from the first point even if that number is 6. However, division by a number other than 60 loses this (3) unless there is clear evidence of a slip.

As above.

Question 16

(a) (i) strong: almost **completely dissociated to give hydrogen ions (H**⁺) in solution // [Accept 'readily,' 'fully' for 'completely'.]

weak: only slightly dissociated to give hydrogen ions (\mathbf{H}^{+}) in solution [Accept 'partially' for 'slightly.' Do not accept 'not fully' for 'slightly.']

(ii) strong: good proton (hydrogen ion, H⁺) donor //
weak: poor proton (hydrogen ion, H⁺) donor (2 × 3)

(b) (i) sulfuric acid:
$$HSO_4^-$$
 (3)

(ii)
$$HA$$
: \mathbf{A}^{-}

WHICH: \mathbf{A}^{-} / conjugate base of weak acid (3)

expl: conjugate base of weak acid / weak acids (HA) exist(s) in undissociated (associated, unionised, molecular) form in water / A more likely to accept a proton / strong acids (H₂SO₄) remain dissociated (ionised) in water (3)

(c) EXPL:
$$HSO_4^- + H_2O \rightarrow SO_4^{2-} + H_3O^+$$
 (6)

[If incomplete, mark as: $HSO_4^- \rightarrow SO_4^{2-} // H_2O \rightarrow H_3O^+$ (2 × 3)]

(d) DEF: minus log (negative log) to base 10 of hydrogen (hydronium) ion concentration /

$$-\log_{10}[H^{+}] / -\log_{10}[H_{3}O^{+}] / \log_{10}\frac{1}{[H^{+}]} / \log_{10}\frac{1}{[H_{3}O^{+}]}$$
 (6)

CALC:
$$pH = 2.45$$
 (9)

$$K_{\rm a} = \frac{[{\rm H}^+][{\rm A}^-]}{[{\rm HA}]} / \frac{[{\rm H}^+]^2}{0.2} = 6.3 \times 10^{-5} / [{\rm H}^+]^2 = 1.26 \times 10^{-5}$$
 (3)

$$\Rightarrow \qquad [\mathbf{H}^{+}] \quad = \quad 3.5 \times 10^{-3} \tag{3}$$

$$\Rightarrow pH = 2.45 \tag{3}$$

or

pH =
$$-\log_{10} \sqrt{K_a[M]}$$

= $-\log_{10} \sqrt{[6.3 \times 10^{-5}] \cdot [0.2]}$
pH = 2.45

[H⁺] =
$$\sqrt{K_a[M]}$$

= $\sqrt{[6.3 \times 10^{-5}].[0.2]}$
pH = 2.45

CONC: $1.75 \times 10^{-3} - 1.77 \times 10^{-3}$ (5)

$$[H^+]$$
 / inv. $\log - pH$ / inv. $\log - 2.45 = 3.55 \times 10^{-3} / 3.5 \times 10^{-3}$ (3)

$$\Rightarrow M = 3.55 \times 10^{-3} \div 2 = 1.77 \times 10^{-3} / 1.75 \times 10^{-3}$$
 (2)

(4 ^ 3)

(b) DEFINE: (i) Arrhenius: dissociates to produce hydroxyl (hydroxide) ions (OH¯) in aqueous solution (water) //

(ii) Brønsted-Lowry: proton (hydrogen ion,
$$H^+$$
) acceptor (4 + 3)

GIVE: (i)
$$H_2PO_4^-$$
 // (ii) PO_4^{3-} (2 × 3)

CALCULATE:
$$11.28 (11.3)$$
 (12)

$$7 \text{ g of NH}_4\text{OH} = 7 \div 35 = 0.2 \text{ mol } \Rightarrow 0.2 \text{ M NH}_4\text{OH}$$
 (3)

$$[OH^{-}] = \sqrt{1.8 \times 10^{-5} \times 0.2} / 1.9 \times 10^{-3}$$
 (3)

$$pOH = -\log 1.9 \times 10^{-3} = 2.72 (2.7)$$
 (3)

$$pH = 14 - 2.72 (2.7) = 11.28 (11.3)$$
 (3)

$$[OH^{-}] = \sqrt{1.8 \times 10^{-5} \times 0.2} / 1.9 \times 10^{-3}$$
 (3)

$$[\mathbf{H}^{+}] = \frac{1 \times 10^{-14}}{\sqrt{1.8 \times 10^{-5} \times 0.2}} / \frac{1 \times 10^{-14}}{1.9 \times 10^{-3}} / 5.3 \times 10^{-12}$$
(3)

pH =
$$-\log 5.3 \times 10^{-12} = 11.28 (11.3)$$
 (3)

QUESTION 8

(a) (i) WRITE:
$$2H_2O \rightleftharpoons H_3O^+ + OH^- / H_2O \rightleftharpoons H^+ + OH^-$$

[Accept with = $o r \rightarrow$] FORMULAS: (3) BALANCING: (2)

(ii) DEFINE:
$$[\mathbf{H}^{+}][\mathbf{OH}^{-}] / [\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{OH}^{-}] / \mathbf{product} \mathbf{of concentrations of hydrogen ions (H}^{+}) \mathbf{and hydroxyl (hydroxide) ions (OH}^{-}) in water$$
 (3)

SHOW: in pure water =
$$[H^+]([H_3O^+]) = [OH^-] / [H^+]^2([H_3O^+]^2) = 1 \times 10^{-14}$$
 (3)

$$=> [H^{+}] ([H_{3}O^{+}]) = \sqrt{1 \times 10^{-14}} = 1 \times 10^{-7}$$
(3)

$$pH = -\log 1 \times 10^{-7} = 7 \quad [Accept without '1 \times']$$
 (3)

(iii) STRONG: **0.3**
$$pH = -\log 0.5 = 0.3 \quad (3)$$

WEAK:
$$2.52 (2.5)$$
 (9)

OR

$$pH = -\log\sqrt{K_a \times M}$$
 (3) = $-\log\sqrt{1.8 \times 10^{-5} \times 0.5}$ (3) => $pH = 2.52$ (3)

(a) (i) DISTNG: stong acid: good proton donor / readily donates protons / almost fully dissociated //

weak acid: poor proton donor / slightly (poorly, weakly) dissociated (2×3) [Allow 'Partly (partially, not fully) dissociated' and 'does not readily donate protons' for weak acid description.]

(ii) CALCULATE: $0.005 \,\mathrm{M}$

$$pH = -log[H^+] \Rightarrow [H^+] = inverse log(-2) = 0.01$$
 (3)

$$0.01 \div 2 \text{ (dibasic)} = 0.005 \text{ M}$$
 (3)

CALCULATE: 5/9 (0.556) M [0.55 - 0.56 M] (6)

$$pH = -log[H^+] \Rightarrow [H^+] = inverse log(-2) = 0.01$$

$$\Rightarrow K_{a} (1.8 \times 10^{-4}) = \frac{[H^{+}][A^{-}]}{[HA]} \left(\frac{[H^{+}]^{2}}{[HA]}, \frac{(0.01)^{2}}{[HA]} \right) / [HA] = \frac{(0.01)^{2}}{1.8 \times 10^{-4}} / [HA] = \frac{(0.01)^{2}}{Ka} / [HA] = \sqrt{Ka[HA]} / (0.01)^{2} = \sqrt{1.8 \times 10^{-4}} [HA] / (0.01)^{2} = 1.8 \times 10^{-4} [HA]$$
(3)

$$[HA] = 5/9 (0.55555) M [0.5556 - 0.56 M]$$
 (3)

$$[acid] = [HA] = [HX] = M = M_a$$

(iii) DEFINE: $K_{\rm w} = [{\bf H}^+][{\bf OH}^-] / K_{\rm w} = [{\bf H}_3{\bf O}^+][{\bf OH}^-] / {\bf product of molar concentrations of hydrogen (hydronium) ions (<math>{\bf H}^+$, ${\bf H}_3{\bf O}^+$) and hydroxide (hydroxyl) ions (${\bf OH}^-$) in water (3)

WHAT: $3.0 \times 10^{-7} \text{ M}$ (4)

$$K_{\rm w} (9.0 \times 10^{-14}) = [{\rm H}^+]^2 / [{\rm H}^+] = \sqrt{K_{\rm w}} (\sqrt{9.0 \times 10^{-14}}) / [{\rm H}^+] = [{\rm OH}^-]$$

 $\Rightarrow [{\rm H}^+] = 3.0 \times 10^{-7} {\rm M}$ (4)

Question 20

- (a) USE: (i) $H_2O + HCI \rightleftharpoons H_3O^+ + CI^-$ (3) [Accept any style arrow, equals sign or equilibrium indicator.]
 - (ii) $H_2O + NH_3 \rightleftharpoons NH_4^+ + OH^-$ [Accept any style arrow, equals sign or equilibrium indicator.] (3)
 - strong acid / good proton donor / equilibrium lies on right / forward reaction favoured / Cl⁻ cannot readily accept protons / Cl⁻ poor proton acceptor [Accept 'fully dissociated'.]
 - (iv) weak base / poor proton acceptor / equilibrium lies on left / reverse reaction favoured / NH₄⁺ readily donates protons / NH₄⁺ good proton donor
 [Accept 'not fully dissociated'.] (3)

(3)

- (b) (i) WRITE: $K_{\rm W} = [H_3O^+][OH^-] / K_{\rm W} = [H^+][OH^-]$ (6) [Allow 3 if $[H_2O]$ appears in expression] [Deduct 3 for brackets not square.]
 - JUSTIFY: more ions at higher temperature (when heated) / K_w bigger at higher temperature (when heated) / forward reaction favoured (equilibrium moves to the right) at higher temperature (when heated) [ARE and JUSTIFY linked.]

endothermic

(ii) ARE:

Temperature	K_{w}	
(°C)		
0	0.1×10^{-14}	
10	0.3×10^{-14}	
20	0.7×10^{-14}	
30	1.4×10^{-14}	
40	2.9×10^{-14}	
50	5.3×10^{-14}	
60	9.3×10^{-14}	

(3)

(iii) PLOT: A: one axis labelled temperature (°C) (3)

B: appropriate correct numeric scales on both axes (3)

C: careful plotting of 7 points to give smooth curve of correct shape (8)

[Deduct (1) in C for <u>each</u> of the following: poor curve; all pairs of points connected with straight lines; graph not on graph paper.]
[Temperature *versus* K_w graph acceptable.]

(iv) USE:
$$2.3 \times 10^{-14} [2.1 \times 10^{-14} - 2.5 \times 10^{-14}]$$
 (6)

(v) USE:
$$1.51 \times 10^{-7} [1.44 \times 10^{-7} - 1.59 \times 10^{-7}]$$
 (3)

$$[H^{+}] = \sqrt{K_{W}} / [H^{+}] = \sqrt{2.3 \times 10^{-14}} \qquad \Rightarrow$$

$$[H^{+}] = 1.51 \times 10^{-7}$$
(3)

(vi) FIND: 40 °C (3)

$$[H^{+}]$$
 = inverse log (-6.77) / $[H^{+}]$ = antilog(-6.77) / $[H^{+}]$ = $\mathbf{10}^{-6.77}$ / $[H^{+}]$ = $\mathbf{1.69} \times \mathbf{10}^{-7} - \mathbf{1.7} \times \mathbf{10}^{-7}$ (2)

$$K_{\rm w} = 2.9 \times 10^{-14} \quad \Rightarrow \quad 40 \, ^{\circ}{\rm C} \tag{1}$$

Accept for 3 marks trial and error testing by getting square root of K_w values and pH of corresponding [H⁺] values if correct temperature is deduced.