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Course 1 Algebra Functions Differentiation

Complex Numbers

Question 1

Joseph is doing a training session. During the session, his heart-rate, h(x), is measured in beats
per minute (BPM). For part of the session, h(x) can be modelled using the following function:

h(x) = —0-38x3 + 2:6x2 — 0-13x + 158

where x is the time, in minutes, from the start of the session,and 0 < x < 6, x € R.



(e) Joseph has a smart watch that beeps every 15 seconds during the session.
It beeps for the first time at exactly 2: 55 p.m., as Joseph starts his session.
It beeps for the last time at exactly 3: 23 p.m., as Joseph finishes his session.

Work out how many times, in total, the smart watch beeps during the session, including the
first and last beep.

(f)  Solve the equation

R(x)=—114x%2+52x— 013 =0

to find how long after the start of the session Joseph’s heart-rate is at a maximum,
for0 < x < 6, x € R. Give your answer in minutes, correct to 2 decimal places.




Question 2

Question 2 (25 marks)

(a) Solve the equation:

9x—6 3x—14 9x
= + =
2 3 4




(b) Solve the simultaneous equations:
3x—y=4
4x? — 3xy = 4.




Question 3

Question 6 (25 marks)
(a) Solve the following inequality for x € R and show your solution on the numberline below:
2(3—x) <8.




(b) Solve for x:
22%-1 = 64,




Question 4

Question 3 (25 marks)

(a) Solve the equation 2x? — 7x — 3 = 0. Give each answer correct to 2 decimal places.

(b) Solve the simultaneous equations below to find the value of a and the value of b.

2a+3b =15
S5a+b =-8







Question 5 (25 marks)
The diagram on the right shows the graph of a quadratic function, f.

(a) Write down the co-ordinates of A, B, and C.

(b) Show that the function can be written as f(x) = —x? + x + 6.

(c) Show, using calculus, that the maximum point of f(x) is (0-5, 6:25).



Question 6

The function f:x +~ x3 + x? — 2x + 7 is defined for x € R.

(a) Find the coordinates of the point at which the graph of f'cuts the y-axis.

(b) Verify, using algebra, that the point A(1, 7) is on the graph of f.

(¢) (i) Find f'(x), the derivative of f(x).
Hence find the slope of the tangent to the graph of f when x = 1.

f1e0 =

Slope =

(ii) Hence, find the equation of the tangent to the graph of fat the point A(1, 7).



Question 7

Question 10
Keith plays hurling.
(a) During a match, Keith hits the ball with his hurl.
The height of the ball could be modelled by the following quadratic function:

h=-2t>+5t+12

where h is the height of the ball, in metres, t seconds after being hit, and t € R.

(i) How high, in metres, was the ball when it was hit (when t = 0)?

(50 marks)

(ii) The ball was caught after 2-4 seconds.
How high, in metres, was the ball when it was caught?




(iii) When the ball passed over the halfway line, it was at a height of 3:2 metres and its
height was decreasing.

How many seconds after it was hit did the ball pass over the halfway line?
Remember that h = —2t2 + 5t + 1-2.

Answer:

d
(iv) Find o and hence find how long it took the ball to reach its greatest height.

Give your answer in seconds.

dh
dat

Length of time =

This question continues on the next page.




(b)

Later in the game, Keith hit the ball again. This time, the height of the ball t seconds after it
was hit could be modelled by a different quadratic function, y = k(t), where k is in metres.

This time, the ball was 1 metre high when Keith hit it.
Its greatest height was 5 metres, which it reached after 2 seconds.
It hit the ground without being caught.

Using the information above, write down the co-ordinates of three points that must be on
the graph of y = k(t), and draw the graph of y = k(t) on the axes below, from when the
ball is hit until it hits the ground.

Points: | ( , )| ( , )|, and ( ) )

A
6 +
5 -+
(%]
g
5 at
1S
=
T 37
<
.20 27T
[}
I
1 +4+
0 1 2 3 4 5

Time, t seconds



Question 8

Question 6 (25 marks)
(a) (i) Differentiate the function f(x) = 4x3 — 3x2? + x — 7, where x € R, with respect to x.

(ii) Find the slope of the tangent to the graph of f(x) = 4x3 —3x2+x—7
at the point (1, —5).

(iii) Hence find the equation of the tangent to the graph at this point.




(b) The function g(x) = 2x2 + px + q, wherep,q € Z, and x € R.
Given that g(2) = 6 and g'(3) =9, find the value of p and the value of q.

Note: g'(3) is the value of the derivative of g(x) at x = 3.




Question 9

Question 8 (65 marks)

The amount, in appropriate units, of a certain medicinal drug in the bloodstream t hours after it
has been taken can be estimated by the function:

C(t) = —t3+ 4-5t> + 54t, where 0<t<9, teR.

(a) Use the drug amount function, C(t), to show that the amount of the drug in the
bloodstream 4 hours after the drug has been taken is 224 units.

(b) Use the function C(t) to complete the table below.

t

(Hours) 0 1 2 3 4 5 6 7 8 9
Cc(t)

(Units) 0 | 575 224




(c)

(d)

Draw the graph of the function C(t) for 0 <t < 9 wheret € R.
3251 C(D)

300 T
2751
250 T

2257

2007

Amount (units)

[ERY = = [y
o N (O ~
o (O} o w
1 1 l 1

I

(92} ~
| !
T T

N

(6, ]
}
T

Time (hours)

Use your graph to estimate each of the following values.
In each case show your work on the graph above.

(i) The amount of the drug in the bloodstream after 3 % hours.

(i) How long after taking the drug will the amount
of the drug in the bloodstream be 100 units?




() (i) Usethe drugamount function C(t) = —t3 + 4-5t2 + 54t tofind, in terms of t, the
rate at which the drug amount is changing after t hours.

(ii) Use your answer to part e(i) to find the rate at which the drug amount is changing
after 4 hours.

(iii) Use your answer to part e(i) to find the maximum amount of the drug
in the bloodstream over the first 9 hours.

(iv) Use your answer to part e(i) to show that the drug amount in the bloodstream is
decreasing 7 hours after the drug has been taken. Explain your reasoning.

Show:

Explanation:






Question 8 (50 marks)

The daily profit of an oil trader is given by the profit function p =96x—0-03x>, where p is the
daily profit, in euro, and x is the number of barrels of oil traded in a day.
(a) Complete the table below.

Number of b 3‘:;13 x 500 1000 1500 2000 2500

Daily profit (€) P 40500

(b) Draw the graph of the trader’s profit function on the axes below for 500 <x <2500, xe R.

4
80000 1

750007

70000 1

65000 1

60000 T

Daily profit (€)

55000 -

50000 -

45000 1

40000

§ 1 1 1 1 1 1 1

500 1000 1500

1 1 1 1

2000 2500

v

Number of barrels of oil
(¢) Use your graph to estimate:
(i) The daily profit when 1750 barrels are traded. Answer:

(ii) The numbers of barrels traded when the daily profit is €60 000.

Answer: or




(d) (i) Use calculus to find the number of barrels of oil traded that will earn the maximum
daily profit.

(ii) Find this maximum profit.

(e) The trader will not make a profit if he trades more than & barrels of oil in a day.
Calculate the value of .




Question 11

Question 1 (30 marks)

The complex number z; is shown on the Argand diagram below.

A |Im

(a) Using the Argand diagram:

(i)  write down the values of z; and Z; , where Z; is the complex conjugate of z;

le Zl=

(ii) plot and label zZ; on the Argand diagram above.




Z, and z3 are two other complex numbers.
Z, = =5+ 3i and z3 = 4 — 2i, wherei? = —1.

(b) Plot and label z, and z3 on the Argand diagram on the previous page.

() Write z, — z3 in the form a + bi, where a, b € R, i?* = —1, and hence find |z, — z3|.

Zy —Z3 =

|z, — z3| =

(d) Investigate if z3 = 4 — 2i is a solution of the equation z2? + 2iz — 7i = 0.

Conclusion:




Question 12

Question 2

zy =—-3+4iandz, =4+ 3i,
where i? = —1.

(a) Plotand label z;, z,,and z; + z, on
the Argand Diagram.

Zl+22:

(30 marks)

z
(b) 2z;= 2_1 Find z5 in the form a + bi, where a,b € Z.
2




(c) Find |Z; — z,|, where Z; is the complex conjugate of z,.
Give your answer in the form p\/a, where p and g € N.




Question 13

Question 3 (25 marks)
z, =3—4i, zy =—-2+1 and z3 = 2iz,, where i? = —1.

(@) (i) Write z; in the form a + bi, where a, b € Z.

Z3 = ZiZZ =

A Im
(ii) Plot z;, z, and z; on the given 5T

Argand Diagram.
Label each point clearly. 47

(iii) Find |z4].




(b) Ifzyxz, =29 + 3i, write z4 in the form a + bi, where a, b € R.




Question 14

Question 2 (25 marks)
The complex number z; = 2 + i, where i? = —1, is shown on the Argand Diagram below.
. Alm
(@ (i) 2z, =2z. 4T
Find the value of z,, and plot and 1
label it on the Argand Diagram. 3
2_._
21
1+ °
Re
-2 -1 1 2 3 4 5
1+
2+
-3+

(ii) Z; is the complex conjugate of z;.
Write down the value of Z;, and plot and label it on the Argand Diagram.

le

(iii) Investigate if |z,| = |z, + Z;].




(b) Show that z; = 2 + i is a solution of the equation z? — 4z + 5 = 0.
1

Question 15



Question 2
z; =—2+3i and z, = —3 — 2i, where i = —1.

Z3 -:Zl _Zz.

(a) Plot z4,z,, and z3 on the Argand Diagram.
Label each point clearly.

Sl

(25 marks)

(b) Investigate if |z3| = |z1| + |2,].

Conclusion:

z
(c) z,= Z—1 Write z4 in the form x + yi, where x,y € R.
2
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